首页> 外文OA文献 >An Algorithm for Automatic Detection of Drowsiness for Use in Wearable EEG Systems
【2h】

An Algorithm for Automatic Detection of Drowsiness for Use in Wearable EEG Systems

机译:一种可穿戴式脑电系统瞌睡自动检测算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Lack of proper restorative sleep can induce sleepiness at odd hours making a person drowsy. This onset of drowsiness can be detrimental for the individual in a number of ways if it happens at an unwanted time. For example, drowsiness while driving a vehicle or operating heavy machinery poses a threat to the safety and wellbeing of individuals as well as those around them. Timely detection of drowsiness can prevent the occurrence of unfortunate accidents thereby improving road and work environment safety. In this paper, by analyzing the electroencephalographic (EEG) signals of human subjects in the frequency domain, several features across different EEG channels are explored. Of these, three features are identified to have a strong correlation with drowsiness. A weighted sum of these defining features, extracted from a single EEG channel, is then used with a simple classifier to automatically separate the state of wakefulness from drowsiness. The proposed algorithm resulted in drowsiness detection sensitivity of 85% and specificity of 93%.
机译:缺乏适当的恢复性睡眠会在奇数小时引起嗜睡,使人昏昏欲睡。如果嗜睡发作发生在不必要的时间,可能会以多种方式对个人造成伤害。例如,驾驶车辆或操作重型机械时的嗜睡对个人及周围人的安全和福祉构成威胁。及时检测睡意可以防止不幸事故的发生,从而提高道路和工作环境的安全性。本文通过在频域上分析人类受试者的脑电图(EEG)信号,探索了跨不同EEG通道的几种特征。其中,三个特征被确定与睡意强烈相关。然后,从单个EEG通道中提取的这些定义特征的加权总和与简单的分类器一起使用,以自动将清醒状态与困倦状态分开。提出的算法使睡意检测灵敏度为85%,特异性为93%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号